8 research outputs found

    Embodied Robot Models for Interdisciplinary Emotion Research

    Get PDF
    Due to their complex nature, emotions cannot be properly understood from the perspective of a single discipline. In this paper, I discuss how the use of robots as models is beneficial for interdisciplinary emotion research. Addressing this issue through the lens of my own research, I focus on a critical analysis of embodied robots models of different aspects of emotion, relate them to theories in psychology and neuroscience, and provide representative examples. I discuss concrete ways in which embodied robot models can be used to carry out interdisciplinary emotion research, assessing their contributions: as hypothetical models, and as operational models of specific emotional phenomena, of general emotion principles, and of specific emotion ``dimensions''. I conclude by discussing the advantages of using embodied robot models over other models.Peer reviewe

    From Imprinting to Adaptation: Building a History of Affective Interaction

    Get PDF
    We present a Perception-Action architecture and experiments to simulate imprinting—the establishment of strong attachment links with a “caregiver”—in a robot. Following recent theories, we do not consider imprinting as rigidly timed and irreversible, but as a more flexible phenomenon that allows for further adaptation as a result of reward-based learning through experience. Our architecture reconciles these two types of perceptual learning traditionally considered as different and even incompatible. After the initial imprinting, adaptation is achieved in the context of a history of “affective” interactions between the robot and a human, driven by “distress” and “comfort” responses in the robot

    Towards long-term social child-robot interaction: using multi-activity switching to engage young users

    Get PDF
    Social robots have the potential to provide support in a number of practical domains, such as learning and behaviour change. This potential is particularly relevant for children, who have proven receptive to interactions with social robots. To reach learning and therapeutic goals, a number of issues need to be investigated, notably the design of an effective child-robot interaction (cHRI) to ensure the child remains engaged in the relationship and that educational goals are met. Typically, current cHRI research experiments focus on a single type of interaction activity (e.g. a game). However, these can suffer from a lack of adaptation to the child, or from an increasingly repetitive nature of the activity and interaction. In this paper, we motivate and propose a practicable solution to this issue: an adaptive robot able to switch between multiple activities within single interactions. We describe a system that embodies this idea, and present a case study in which diabetic children collaboratively learn with the robot about various aspects of managing their condition. We demonstrate the ability of our system to induce a varied interaction and show the potential of this approach both as an educational tool and as a research method for long-term cHRI

    Epigenetic adaptation through hormone modulation in autonomous robots

    No full text
    Epigenetic adaptation provides biological organisms with the ability to adjust their physiology and/or morphology in order to meet some of the challenges posed by their environment. Recent research has suggested that this process may be controlled by hormones. In this paper, we present a model that allows an autonomous robot to develop its systems in accordance with the environment it is currently situated in. Experiments have been undertaken in multiple environments with different challenges and niches to negotiate. We have so far seen encouraging results and the emergence of unique behaviours tailored to exploiting its current environment

    Why should you care? : An arousal-based model of exploratory behavior for autonomous robots

    No full text
    The question of how autonomous robots could be part of our everyday life is of a growing interest. We present here an experiment in which an autonomous robot explores its environment and tries to familiarize itself with the features available using a neural-network-based architecture. The lack of stability of its learning structures increases the arousal level of the robot, pushing the robot to look for comfort from its caretaker to reduce the arousal. In this paper, we studied how the behavior of the caretaker influences the course of the robot exploration and learning experience by providing certain amount of comfort during this exploration. We then draw some conclusions on how to use this architecture together with related work, to enhance the adaptability of autonomous robots developmen

    Meaningful Information, Sensor Evolution, and the Temporal Horizon of Embodied Organisms

    No full text
    We survey and outline how an agent-centered, informationtheoretic approach to meaningful information extending classical Shannon information theory by means of utility measures relevant for the goals of particular agents can be applied to sensor evolution for real and constructed organisms. Furthermore, we discuss the relationship of this approach to the programme of freeing arti cial life and robotic systems from reactivity, by describing useful types of information with broader temporal horizon, for signaling, communication, aective grounding, two-process learning, individual learning, imitation and social learning, and episodic experiential information (memories, narrative, and culturally transmitted information)
    corecore